
  

Abstract—This paper presents a software–hardware co-

designed Field Programmable Gate Array (FPGA)-based real-

time ECG classification system that combines methodological and 

practical innovations to achieve state-of-the-art performance with 

an ultra-compact model. On the software side, we introduce a 

hardware-adaptive, configurable quantization-aware training 

(QAT) framework that enables layer-wise precision assignment 

and flexible quantization, ensuring the trained model is highly 

accurate and hardware-friendly even at ultra-low bit-widths. On 

the hardware side, we propose a resource-efficient FPGA 

accelerator featuring a streaming architecture and a cosine-

approximated CWT module, optimized for low-power and real-

time inference. Implemented in FPGA, We demonstrate that a 6-

layer Inception-ResNeXt network can achieve 99.5% inference 

accuracy on the MIT-BIH ECG dataset with 200mW dynamic 

power and 0.0767mJ/inference energy efficiency.  

 
Index Terms — ECG, low-power Edge-AI, FPGA, Hardware-

software co-design, streaming architecture, fixed-point quantization.  

I. INTRODUCTION 

eep neural networks (DNNs) have demonstrated 

remarkable performance in a wide range of classification 

tasks in the areas of image recognition [1, 2] and natural 

language processing [3], and recently shown great potentials  

biomedical signal processing, particularly in electrocardiogram 

(ECG) analysis for cardiovascular disease (CVD) monitoring 

[4]. The emergence of wearable ECG devices, which enables 

continuous monitoring of cardiovascular activities, greatly 

benefits personalized medicine but also raises concerns of 

personal information security. The capacity of continuous 

monitoring and real-time analyzing cardiac data is essential for 

early arrhythmia detection and timely clinical intervention [5]. 

However, implementing DNNs on wearable devices is faceing 

substantial design challenges due to the limitations in memory 

size and computational capacity as well as power hungry 
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computation [6]. Field Programmable Gate Array (FPGA) is a 

promising alternative which offers a combination of power 

efficiency and flexibility for system upgrades due to their 

reconfigurable nature. On the other hand, network weight 

quantization has emerged as an effective method to reduce 

memory usage while maintaining competitive classification 

accuracy [9,10]. The main challenge lies in balancing model 

complexity, accuracy, computational demands, and power 

consumption [11,12]. Among various DNNs, the Inception 

architecture stands out for its use of variable filter sizes and 

combined convolutions, enabling efficient feature extraction 

and making it well-suited for resource-constrained edge devices 

[13]. Given the trend toward personalized medicine and data 

security, there is a critical need for an end-to-end, edge-

deployed ECG monitoring solution that leverages hardware–

software co-design for optimal performance and robustness in 

limited environments. Recent advances in edge-based ECG 

classification highlight the necessity of integrating algorithmic 

innovation with hardware implementation [14–21]. While 

developments in deep learning and adaptive quantization have 

improved performance [16,17], real-time processing, energy 

efficiency, and hardware compatibility remain essential [20,21]. 

Thus, jointly optimizing neural network design and hardware 

realization is vital for next-generation wearable and edge 

medical devices.  

Many methods have been explored to implement ECG 

monitoring algorithm and hardware-software co-design for 

ECG ventricular ectopic beat classification have been reported 

[14-28]. For instance, prior studies have introduced various 1D 

CNN-based approaches for ECG signal classification [22, 23]. 

However, using 1D ECG signals for model training, which 

often contain noise such as baseline wandering effects, 

necessitates extensive preprocessing to filter and extract 

features, including frequency domain characteristics [24]. 

Recent research focused on the mapping of ECG signals to 
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frequency domain and processing them with DNNs like LSTM 

and 2D CNNs [25, 26]. Nonetheless, the huge amount of data 

involved in these approaches pose challenges for real-time 

implementation on edge devices. More recently, hardware 

solutions have been proposed and simulated on FPGA and 

ASIC platforms [27, 28] but achieving applications beyond 

binary classification remains a challenge. Moreover, the 

development of circuits for transforming ECG signals into 2D 

spectrogram representations still require enhancements tailored 

for edge devices [29, 30]. Furthermore, additional endeavors 

have been made to provide FPGA implementations [31-33]. 

However, addressing the critical need for hardware-software 

co-design on FPGA platforms remains a pressing concern. 

This work presents an FPGA-based real-time ECG 

classification system. The key innovations in this work are 

summarized as follows. Firstly, we introduce a hardware-driven, 

configurable quantization-aware training (QAT) pipeline that 

jointly optimizes network training and quantization for the 

deployment constraints of FPGA-based edge devices. This 

adaptive framework enables layer-specific bit-width 

assignment, dynamic quantization resolution based on kernel 

statistics, and seamless integration of hardware limitations into 

the training process, yielding a highly compact model with 

state-of-the-art accuracy. Secondly, the system-level software–

hardware co-design methodology is adopted, wherein the 

Inception-ResNeXt neural network architecture, cosine-

approximated CWT feature extraction, and the FPGA hardware 

architecture are holistically optimized for real-time edge 

inference. Thirdly, we demonstrate the effectiveness of this 

integrated approach through a rigorous FPGA implementation, 

achieving 99.5% accuracy, low inference energy, and compact 

model size, thus establishing a new benchmark for low-power, 

high-performance edge-AI biomedical systems. Implementing 

a pipelined streaming architecture with layer wise customized 

dataflow and precision to achieve ultra-low latency inference 

while maintaining low resource consumption on FPGA. A 6-

layer Inception-ResNeXt is designed with 8 bit / 4 bit resolution. 

MIT-BIH ECG dataset [34] with five distinct classes is used for 

evaluating our inference accuracy.  

The rest of this paper is organized as follows, Section II 

introduces the overall system architecture and the Inception-

ResNeXt network. Section III presents the band pass filter 

(BPF)-based approximated CWT signal processing block. 

Section IV presents the FPGA implementation and Section V 

shows the measurement results. Finally, Section VI concludes 

the paper. 

II. CVD RECOGNITION SYSTEM WITH INCEPTION-RESNEXT 

Fig. 1 shows the block diagram of the proposed real-time 

ECG classification system. The raw ECG signal acquired from 

the sensor is first preprocessed in hardware by the MAX30003 

AFE chip, which performs band-pass filtering, baseline 

stabilization, and real-time segmentation. The denoised ECG 

windows are then sent to the FPGA, where a CWT 

approximation extracts the feature map. The quantized feature 

map will be processed by a 2-stage Inception-ResNeXt network 

and a MLP classifier for classification. 

A. Data Preprocessing 

MIT-BIH arrhythmia database [34] is used for neural 

network training. This dataset comprises 48 half-hour segments 

of ambulatory ECG recordings, captured from 47 individuals. 

The data sampling frequency is 360 Hz per lead with 11-bit 

resolution.  

Each ECG beat is segmented with a focus on the R-wave 

peak time, as shown in Fig. 2. Specifically, the classification of 

   

 
Fig.  1. Block diagram of the proposed real-time ECG signal classification system. Association for the Advancement of Medical Instrumentation (AAMI) 

recommends grouping ECG heartbeats into the five categories 
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arrhythmia types is anchored at the R-wave peak of every ECG 

beat. The R-wave peak is used as the center point to generate 

segmented ECG signal. The boundaries of each beat signal are 

defined by the preceding and subsequent R-peaks, with an 

additional bias applied to refine the segmentation. This method 

allow us to isolate individual ECG beats precisely yet 

consistantly. The range of a single beat is determined by: 

𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘 − 1) + 𝑏) ≤ 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘)) 

≤ 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘 + 1) − (120 − 𝑏))                   (1) 

where 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘)) is the R-wave peak time of annotation 𝑘 

and 𝑏 is the beat range bias. However, it is important to note 

imbalanced sample distribution in this dataset, recognized by 

[35]. To mitigate the impact of imbalanced sample distribution, 

two strategies have been introduced during the preprocessing 

phase as shown in Fig. 3. In the training process, for common 

classes like Normal beats (N) and Ventricular ectopic beats (V), 

a random selection of 5000 samples from each class is made for 

every epoch. Conversely, for rarer classes such as 

Supraventricular ectopic Beats (S), Fusion beats (F) and 

Unclassifiable beats (Q), a dynamic approach is utilized to 

augment the data with a variable beat range bias, randomly 

chosen between 40 and 80, according to the equation (1). This 

strategy facilitates the generation of 2000 samples for each rare 

class. This method does not increase computational complexity 

nor requires extensive hyperparameter tuning. It serves as an 

implicit regularization technique, effectively balancing the 

dataset without imposing additional computation burdens. In 

addition, all dataset was performed with systematic random 

noise injection and shifting augmentation, ensuring the 

evaluation reflects both diversity and robustness. 

Subsequently, all samples are standardized to a uniform size 

of 360 data points. For samples exceeding this length, 

truncation is applied to reduce the size to 360. Conversely, 

shorter samples are padded with zeros to extend their length to 

the standard size. This standardization ensures uniformity in the 

dataset, facilitating consistent processing and analysis.  

B. Inception-ResNeXt Architecture 

Inception excels at capturing multi-scale features via multi-

path convolutions, though it can be computationally intensive. 

Conversely, ResNeXt, featuring grouped convolutions and 

residual connections, offers efficiency and stable training but 

may lack detailed multi-scale feature extraction. Combining 

these architectures leverages their complementary strengths, 

providing a balanced solution for robust ECG signal processing. 

Although the CWT already extracts primary time-frequency 

information, the feature extractor within the Inception-ResNeXt 

model is by no means redundant. Instead, it is specifically 

designed to work on the resulting image-like data, utilizing 

  
(a) 

 
(b) 

 ResNet 

Block 

Inception 

Block 

IRN 

Block 

# Params (k) 8.4 5.8 6.3 

MACs (M) 1.05 0.66 0.73 

Acc (%) 99.37 99.28 99.36 
(c) 

Fig.  4. (a) The architecture of the Inception network and (b) the proposed 
Inception-ResNeXt block (IRN block). (c) Ablation study comparing the 

proposed Inception-ResNeXt (IRN) block with conventional ResNet and 

Inception blocks. 

 

 
Fig.  2. Signal segmentation based on R-wave peak times. The method 

used to segment ECG signals focuses on the R-wave peaks to isolate 
individual heartbeats for precise arrhythmia classification. 

  
Fig.  3. Data preprocessing workflow for ECG signals. 
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multi-path convolutions to further refine features and capture 

spatial patterns at different scales. This complementary 

approach enhances the discriminative capability of the network, 

ensuring that the model can effectively learn subtle variations 

in the ECG signals. 

Fig. 4 shows the block digaram of the conventional Inception 

block, Fig. 4(a), and the proposed Inception-ResNeXt model, 

Fig. 4(b). The input feature map firstly goes through a 1×1 

convolution to  reduce channel dimensions and prepare features 

for subsequent operations. Next, the feature map is processed 

by a 3×3 convolution to extract spatial information. The 

resultant feature map is then split into two equal segments along 

the channel dimension as ResNeXt, each with half number of 

channels. The first segment of the split channels undergoes 

another 3×3 convolution to further refine its representation to 

achieve 5×5 effective receptive field, while the second segment 

retains its original processed features. These two segments are 

subsequently recombined through channel-wise concatenation, 

allowing multi-scale spatial patterns and complementary 

representations to merge effectively, similar to the parallel 

operations in Inception approach. Finally, the concatenated 

output is subjected to an element-wise addition with the original 

feature map from the 1×1 convolution, forming a residual 

connection.  

Channel splitting reduces the computation load while 

retaining feature extraction capabilities. Hardware-specific 

optimizations, such as mapping the 1×1 and 3×3 convolutions 

to dedicated hardware units, and efficient channel 

concatenation, further enhance performance by minimizing 

data movement and latency. Moreover, it has been proven that  

consecutive 3×3 convolutions is equivalent to a 5×5 

convolution [13]. This finding can be used to increase 

computational efficiency while preserving model capacity. The 

residual connections not only facilitate better gradient flow 

during the training but also promote data reuse, reducing 

redundant computations and boosting energy efficiency. These 

features make the IRN block a robust solution for real-time 

image processing and embedded AI tasks, where efficiency and 

high performance are critical. 

To further validate the effectiveness of the proposed IRN 

block, we conducted an ablation study comparing it with 

conventional ResNet and Inception blocks under identical 

training and evaluation protocols. As summarized in Fig. 4(c), 

the IRN block achieves competitive accuracy with reduced 

computational complexity and parameter count compared to the 

ResNet block, and outperforms the Inception block in accuracy 

with only a slight increase in MACs. This demonstrates the 

balanced trade-off between efficiency and accuracy brought by 

our design. 

C. Configurable Quantization Aware Training 

During the training phase of the Inception-ResNeXt, the 

configurable quantization method is applied for weight 

quantization and activation quantization, respectively.  

Quantization aware training (QAT) ensures that the model is 

optimized for quantized deployment [36], leading to reduced 

model size and lower computation complexity. The flowchart  

of the training process is shown in Fig. 5. For weight 

quantization in this system, the process is intricately intertwined 

with the backpropagation algorithm. Conversely, for activation 

quantization, the procedure is integrated into the forward pass 

of the network. The system accuracy was systematically 

evaluated across a range of weight and activation resolutions, 

as illustrated in Fig. 6. The results demonstrated a clear trend, 

indicating the tradeoffs in selecting different resolutions. 

Specifically, the model weights are quantized to a signed 4-bit 

representation with 8-bit activation resolution.  

 In the proposed quantization process, a 2D convolution 

kernel of dimensions (C, H, W) is utilized as an example. The 

initial step involves determining the maximum absolute value 

within the kernel.  

𝑘𝑚𝑎 = max⁡(|𝐾𝑐,ℎ,𝑤|)                            (2) 

where, 𝐾𝑐,ℎ,𝑤  represents the value of the kernel at the 

𝑐𝑡ℎ channel, ℎ𝑡ℎ  row, and 𝑤𝑡ℎ  column. The function max⁡(∙) 
operates over all the kernel dimensions, and ⁡ | ∙ | denotes the 

absolute value. Subsequently, the Most Significant Bit (MSB) 

resolution in the fixed-point representation is defined as follows: 

𝑟𝑀𝑆𝐵 = 𝑟, 𝑖𝑓⁡ {
𝑘𝑚𝑎 > 2𝑟

𝑘𝑚𝑎 < 2𝑟+1
                       (3) 

  
Fig.  5. The flow of the configurable quantization-aware training process.    

Fig.  6. System accuracy is evaluated across various weight and activation 

resolutions, demonstrating the trade-offs between quantization levels and 

computational efficiency. 
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The n-bit signed fixed-point number has 1 sign bit and (𝑛 −
1) binary bits. The resolution of the Most Significant Bit (MSB) 

is 2𝑟𝑀𝑆𝐵, decreasing exponentially to the resolution of the Least 

Significant Bit (LSB), which is 2𝑟𝑀𝑆𝐵+2−𝑛. 

This approach ensures that the quantization process is 

dynamically adaptable, enhancing the precision of the weights 

while maintaining a balance between model size and 

performance. Post-linear and nonlinear operations, the resultant 

features are quantized to a signed 8-bit format, also utilizing a 

configurable fixed-point approach. This method of quantization 

for activations allows for a more nuanced representation of the 

feature space, catering to the intricate variations in the data 

while ensuring computational efficiency. 

By quantization of weights and activations, the model size is 

reduced significantly, becoming more suitable for deployment 

on hardware with limited computational resources. 

Furthermore, the configurable nature of the fixed-point 

representation in both weight and activation quantization allows 

for a flexible adjustment of the trade-off between accuracy and 

computational demand. This adaptability is crucial in ensuring 

that the proposed system remains both efficient and effective in 

real-world applications.  

III. BPF-BASED CWT APPROXIMATION  

A. Theory Derivation 

Continuous Wavelet Transform (CWT) represents signal 

frequency content at different scales and time intervals 

simultaneously. ECG signals are inherently non-stationary, 

with rapid transitions that can be critical for identifying 

arrhythmic events. CWT provides a powerful tool to analyze 

such signals in both time and frequency domains 

simultaneously. This dual-domain representation enhances the 

visibility of transient features that are often masked in purely 

time-domain analysis, making it particularly suitable for 

detecting subtle pathological changes. The original CWT 

formula is written as:  

𝐶𝑊𝑇(𝑎, 𝑏) = ⁡
1

√𝑎
∫ 𝑓(𝑡) ∙ 𝜑(

𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
             (4) 

where 𝑓(𝑡) represents the input time domain signal, 𝑎 and 𝑏 

are the scale and translation of the transform, respectively and 

𝜑 is the wavelet function. In this design, Morlet wavelet, which 

is a multiplication of a complex exponential and a Gaussian 

window is chosen as the wavelet function. In contrast to Haar 

or Daubechies wavelets, the complex Morlet wavelet was 

selected for its superior time-frequency localization and phase 

sensitivity, which are critical for accurately capturing the subtle 

morphological features of ECG signals. The representation of 

Morlet is shown as 

𝜑(𝑡) = ⁡ 𝑒𝑖𝜔𝑡𝑒−
𝑡2

2                               (5) 

In practical applications, the complex exponential function in 

the 𝑒𝑖𝜔𝑡  Morlet wavelet can be approximated with cosine 

function cos(𝜔𝑡) with small 𝜔𝑡. 

𝜑′(𝑡) = ⁡cos⁡(𝜔𝑡) ∙ 𝑒−
𝑡2

2                         (6) 

The cosine approximation for the Morlet wavelet is 

particularly effective for ECG signals, because of its low 

frequency characteristic. By using cosine instead of the full 

complex format, CWT hardware implementation in FPGA has 

reduced resource requirements, leading to faster computations 

and improved efficiency. This simplification also lowers power 

consumption, which is crucial for low-power medical devices. 

Despite the simplification, the accuracy for high-frequency 

feature extraction remains largely unaffected, making it an 

efficient approach for edge computing scenarios. Replace the 

wavelet function in CWT, we have 

𝐶𝑊𝑇′(𝑎, 𝑏) = ⁡
1

√𝑎
∫ 𝑓(𝑡) ∙ cos⁡(𝜔 ∙

𝑡−𝑏

𝑎
) ∙ 𝑒−

(
𝑡−𝑏
𝑎 )2

2 𝑑𝑡
∞

−∞
  (7) 

To implement the CWT on FPGA, (7) is rewritten in a 

discrete format, where integration is replaced with summation 

and the continuous parameters are discretized. 

𝐶𝑊𝑇′(𝑗, 𝑘) = ⁡∑ 𝑓[𝑛] ∙ 𝜑′[𝑛 − 2𝑘]
𝑛

 

 
Fig.  8. Fusion of 1D convolution and average pooling into an effective 1D 
convolution operation for efficient hardware implementation. 

 
Fig.  7. The matrix of wavelets generated for different scales with the 
proposed discrete CWT approximation implemented on FPGA. 
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=⁡
1

√𝑗
∑ 𝑓[𝑛] ∙ cos⁡(𝜔 ∙

𝑛−2𝑘

𝑗
) ∙ 𝑒−

(
𝑛−2𝑘
𝑗

)2

2𝑛            (8) 

where 𝑓[𝑛] represents the discrete signal at sample 𝑛, 𝑗 and 𝑘 

are the scale and translation of the transform, respectively. 

IV. FPGA IMPLEMENTATION AND ACCELERATION  

A. Implementation of CWT Approximation 

Following (8), the simplified discrete CWT can be 

segmented into two main components: wavelet generation and 

1D convolution, followed by average pooling. After the scale 

and translation parameters of the Morlet wavelet are determined, 

the wavelet kernels across scales from 1 to 90 are precomputed 

offline and stored as a wavelet matrix on the FPGA, as 

illustrated in Fig. 7. This matrix contains the discrete wavelet 

coefficients for each scale and is independent of the specific 

input data, allowing for rapid access and reuse during inference. 

For each new input signal segment, the FPGA retrieves the 

appropriate pre-stored wavelet kernel for each scale and 

performs a 1D convolution with the input signal to obtain the 

set of CWT coefficients. This design enables real-time, 

resource-efficient processing without the need for runtime 

wavelet generation.  

After obtaining the CWT coefficients for all scales, an 

average pooling operation is applied along the temporal 

translation dimension. While this pooling step is not part of the 

classical CWT mathematical definition, it is incorporated in our 

hardware design to reduce the size of the feature map and 

minimize resource usage in the subsequent neural network 

layers. By aggregating adjacent CWT coefficients, average 

pooling compresses the feature representation, achieving a 

favorable balance between information preservation and 

hardware efficiency.  

To further reduce computational overhead, the wavelet 

convolution and average pooling operations are fused into a 

single wavelet matrix, as illustrated in Fig. 8. This integration 

removes the need for separate hardware dedicated to average 

pooling, thereby lowering hardware complexity. The fused 

CWT–pooling layer is realized as a one-dimensional 

convolutional operation with 60 output channels, implemented 

using the same hardware architecture as standard convolutional 

layers. The hardware implementation of discrete CWT 

apporximation is compared with software CWT in Fig. 9. It can 

be observed that results at smaller scales (high frequencies) are 

very close to the original, while at larger scales (low 

frequencies), a slight reduction occurs. The reason is that at 

smaller scales, wavelet transforms focus on the local details of 

the signal, which are dominated by high-frequency components. 

The cosine function effectively approximates these local 

structures, and since the amplitude of high-frequency 

components in ECG signals is typically low, the omission of the 

imaginary part (sine component) results in negligible 

information loss, thereby maintaining accuracy. The effect on 

ECG signal classification was minimal after QAT training, and 

the approximation significantly reduced FPGA resource 

consumption by eliminating the need for complex arithmetic 

units, thereby enhancing computation speed and efficiency, 

which is particularly beneficial for edge computing devices. 

B. Neural Network Hardware Architecture 

After the quantization-aware training process is completed, 

the finalized model is exported and fully mapped onto the 

FPGA hardware. The FPGA operates only as an inference 

accelerator, using the fixed weights and quantization 

parameters determined during offline training. No further 

software process is required for quantization or model 

adjustment at runtime. The FPGA-based implementation of the 

neural network (NN) hardware architecture is illustrated in Fig. 

10. As shown in Fig. 10(a), the design adopts a layer-by-layer 

streaming architecture employing dedicated hardware modules, 

which is particularly advantageous for compact neural networks 

in tinyML applications. This architecture offers high 

adaptability to support network compression techniques, such 

as pruning and quantization, that introduce structural 

irregularities. 

The streaming architecture on FPGA allows for customized 

dataflow in all hardware blocks, which can be tailored to 

minimize control logics and memory size. This distinct 

advantage of FPGA implementation is leveraged to enable 

more efficient Inception-ResNeXt acceleration. For instance, 

the IRN block shown in Fig. 4(b) is implemented as 2 IRN 

     
                                 (a)                                                    (b)                                                      (c) 
Fig. 9. An example of ECG signal, (a) original signal wave, is processed with (b) software CWT on computer and (c) proposed simplified half precision 
CWT on FPGA. All FPGA input signals were provided in IEEE 754 half-precision (float16) format. 
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blocks, IRN_CONV1 and IRN_CONV2 as shown in Fig. 10(a). 

IRN_CONV1 includes the first 3×3 convolutional layer and the 

1×1 convolutional layer, which share the same control logic, 

weight memory, and input activation memory. The output 

activations require special handling because all activations from 

the 1×1 convolutional layer and half of the activations from the 

first 3×3 convolutional layer do not pass through the second 

3×3 convolutional layer. Therefore, half of the activations from 

the 1×1 convolutional layer and the 3×3 convolutional layer are 

added together before being sent to the IRN_CONV2 block, 

reducing the activation memory required in IRN_CONV2. The 

memory controller of the IRN_CONV2 block is then 

customized to read only half of the input feature maps for the 

PEs to perform the second 3×3 convolution, while the other half 

of the feature maps are bypassed and directly forwarded as 

output activations of the IRN_CONV2 block. This special 

memory handling can only be achieved by customizing the 

memory controller shown in Fig. 10(b) of the IRN_CONV2 

block to efficiently store and read these activations for 

processing. Similarly, for downsampling layers, pooling layers, 

and the MLP layer, the logics are customized to achieve the 

ideal balance between resource usage and accelerator 

performance.  

Furthermore, because different layers may require distinct 

quantization levels as determined by the configurable QAT, our 

hardware design integrates dedicated hardwired logic within 

each layer’s processing block to natively support these layer-

specific quantization levels. This eliminates the need for 

additional shifters or memory buffers and demonstrates one of 

the key advantages of adopting a streaming architecture. 

C. Dataflow for Efficient Throughput Balancing 

One significant drawback of using a streaming architecture 

with dedicated layer modules is the low utilization of 

processing elements (PEs). PEs start to process only when the 

input data is ready, leading to considerable idle states while 

waiting for inputs. The ideal scenario is to have the same 

throughput for all layers, enabling maximum pipeline 

utilization. However, achieving this is challenging due to the 

large variety of NN architectures and structures. 

The most promising approach for throughput balancing is 

through row or column parallelism [37]. Using this input 

stationary-output stationary (ISOS) dataflow, the input 

consumption and output production of each layer are balanced. 

However, achieving a highly balanced pipeline using ISOS 

would require a huge number of PEs, which is not practical for 

edge applications.  

Therefore, instead of balancing the latency processing one 

row or one column for each layer, we balance the average 

latency to process all output activation pixels for each layer. 

This method reduces PE utilization and increases memory 

footprint by a small margin compared to the ISOS dataflow, but 

it significantly reduces the number of PEs required.The 

throughput of each layer can be estimated as shown in equation 

below. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≈ ⁡
𝑈𝑛𝑟𝑜𝑙𝑙⁡𝐹𝑎𝑐𝑡𝑜𝑟

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡
𝑖𝑛𝑝𝑢𝑡⁡𝑝𝑖𝑥𝑒𝑙𝑠⁡

𝑝𝑒𝑟⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑝𝑖𝑥𝑒𝑙
×
𝑇𝑖𝑚𝑒⁡𝑛𝑒𝑒𝑑𝑒𝑑
𝑡𝑜⁡𝑐𝑜𝑚𝑝𝑢𝑡𝑒⁡1
𝑖𝑛𝑝𝑢𝑡⁡𝑝𝑖𝑥𝑒𝑙

×
𝑁𝑢𝑚𝑏𝑒𝑟

𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑝𝑖𝑥𝑒𝑙
⁡

   (9) 

 The throughput of each layer can be adjusted by tuning the 

unroll factor and the time needed to compute one input pixel. 

For layers that require a larger number of input pixels to 

compute one output pixel, we can increase the unroll factor by 

introducing more PEs or introduce faster MAC units for quicker 

computation, or both. Conversely, for layers that require a 

smaller number of input pixels, we can introduce slower MAC 

units such as bit-serial MAC units to reduce resource usage 

without sacrificing performance. Moreover, the PE architecture 

shown in Fig. 10(c) can be configured to cater to different 

dataflows suitable for different NN layers, adding another 

 

Fig. 10. Implementation of (a) streaming architecture with different hardware blocks catered to different layers, (b) architecture of each hardware blocks shown 

in 10(a), (c) architecture of each PE shown in 10(b). The PEs can be configured to achieve any type of input sharing. Additional output buffer may be added 
to suit different dataflows. 
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degree of freedom for throughput tuning in each layer block. 

When the throughput of all layer blocks roughly matches the 

input consumption rate of the subsequent blocks, PE utilization 

is more balanced, and higher accelerator performance can be 

achieved while maintaining low resource usage. As shown in 

Fig. 11, PE utilization across different layers are better balanced 

with the throughput balancing technique introduced. 
  

V. MEASUREMENT RESULTS 

As the preprocessing by MAX30003 is fully hardware-based 

and incurs negligible latency and resource cost compared to 

FPGA inference, it is not separately measured in our reported 

results. The pre-processed data were converted to half-precision 

format (IEEE 754 binary16 [38]). This conversion was 

performed to optimize computational efficiency and resource 

utilization during the processing phase. The half-precision ECG 

signals were then processed utilizing the proposed Continuous 

Wavelet Transform (CWT) approximation method. This 

approximation technique was selected for its ability to 

effectively analyze the frequency components of the ECG 

signals, which is crucial for identifying arrhythmic events 

within the data.  

 QAT training was implemented in an environment equipped 

with an Intel 13600KF CPU, 32GB of RAM, and an NVIDIA 

RTX 3060Ti GPU. The model was optimized using stochastic 

gradient descent with a momentum of 0.8 and an initial learning 

rate of 0.01. Training was conducted over 300 epoch with a 

batch size of 200, and dropout (p=0.5) was applied in the fully 

connected layer to mitigate overfitting. Additionally, 

quantization-aware training was integrated using custom 

modules that perform 4-bit weight and 8-bit activation 

quantization to balance accuracy and computational efficiency. 

The proposed configurable quantization-aware training process 

was designed to enhance the model ability to maintain accuracy 

when deployed in environments with limited computational 

resources by incorporating quantization considerations directly 

into the training process, enabling the network to learn 

compensation strategies for the quantization-induced noise and 

thereby preserve critical feature representations despite reduced 

bit precision. Furthermore, by adaptively adjusting quantization 

precision across different layers, this approach minimizes the 

typical accuracy degradation associated with quantization while 

reducing memory and computational requirements. Fig. 12 

shows the results of the configurable quantization-aware 

training process. The training phase achieved a remarkable 

accuracy from 93.28% for the model trained without 

configurable quantization-aware training to 99.5% under 4-bit 

weight quantization and 8-bit activation quantization, which 

also showcased the effectiveness of the proposed model. 

 The proposed Inception-ResNeXt model is deployed on an 

Arty A7-35 development board with the architecture shown in 

Fig. 10. To ensure an efficient and reliable implementation, the 

proposed architecture was described in HDL and developed 

using the standard Xilinx Vivado [44] 2022.1 toolflow for 

synthesis, implementation and bitstream generation. The 

generated bitstream was then deployed onto the Arty A7-100T 

FPGA development board. For performance evaluation, 

batches of preprocessed ECG signals were transmitted from a 

host laptop to the FPGA board via a USB interface. The FPGA 

performed real-time inference, and the resulting classifications 

were collected on the host for accuracy evaluation. Average 

inference latency was measured directly on the hardware using 

timestamping at the input and output of each batch. Power 

consumption was measured following the setup shown in Fig. 

13. The FPGA board was powered through a JS220 precision 

power analyzer, with the power consumption monitored via the 

analyzer’s user interface, in line with the manufacturer’s 

guidelines [45]. The implementation of model on an FPGA 

   

 
Fig. 11. PE utilization rate w/ & w/o throughput balancing. 

 
Fig.  13. Power consumption measurement setup with Power JS220 

Precision Energy Analyzer. The higher power levels shown on the screen 

correspond to periods when the board is actively performing inference. 

 

 
Fig.  12. The training process of the Inception-ResNeXt model  
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platform was evaluated to assess its real-world applicability and 

performance. The confusion matrix, a pivotal tool for 

visualizing the performance of classification models is shown 

in Fig. 14(a). This matrix provides a detailed breakdown of the 

model predictive capabilities across different classes, offering 

insights into its precision and reliability in classifying ECG 

signals. To underscore the impact of the configurable 

quantization-aware training on the model performance, the 

confusion matrix of the model trained without the incorporation 

of configurable quantization-aware training is presented in Fig. 

14(b). Notably, it was observed that the accuracy of the FPGA 

implementation achieves significantly 99.5% for this software-

hardware co-design model benefiting from this innovative 

configurable quantization aware training approach. To provide 

a more comprehensive evaluation of the class-wise 

discrimination, Fig. 14(c) further presents the receiver 

operating characteristic (ROC) curves and corresponding 

macro-average for all five ECG classes. All classes achieve 

high AUC values, and the inset highlights the near-perfect 

separability in the high-AUC region, demonstrating the 

excellent performance and robustness of the proposed approach 

in multi-class ECG classification. 

Table. I summarized the measurement results and compared 

with other recent state-of-the-art designs. It can be observed 

that this design achieved the highest accuracy among all 

implementations, demonstrating the performance of the 

proposed network architecture. Additionally, as depicted in Fig. 

15, this design achieved the highest accuracy with the smallest 

model size, providing a good balance between model size and 

accuracy. Furthermore, this design achieved low energy 

consumption per inference, which is a significant advantage for 

edge devices. This is attributed to the implemented streaming 

architecture, where the neural network is directly mapped onto 

the FPGA, resulting in an optimized and efficient hardware 

implementation. These results also demonstrate that FPGAs can 

serve as an ideal platform for software–hardware co-design, 

particularly in the context of neural network implementation. 

TABLE I. COMPARISONS WITH STATE-OF-THE-ART FPGA IMPLEMENTATIONS ON 5-CLASS-MIT-BIH DATASET 

 [39] [40] [41] [42] [43] This Work 

(w/o throughput 

balancing) 

This Work 

(w/ throughput 

balancing) 

Feature 

Extraction  

LC-CTDA N.R. LC BernoulliRBM N.R. CWT CWT 

Network 

Architecture 

ANN CNN SNN CNN CNN Inception-ResNeXt Inception-ResNeXt 

Model Size 

(Kbit) 

59.5 177 75.6 51200 6.55 25.4 25.4 

Hardware 

Platform 

Pynq-Z2 ZC706 XC7A100T PYNQ-Z1 PYNQ-Z2 XC7A35T XC7A35T 

LUTs 6293 2510 659 17579 10877 8414 11364 

DSPs 0 96 0 85 53 0 0 

FFs 1331 N.R. 783 20060 1949 15971 21118 

BRAMs 0 N.R. 17 39.5 2 28 28 

Inference 

Latency (ms) 

2.52 38.6 0.504 14 0.233 1.78 0.350 

Power  N.R. N.R. N.R. 1.53* 0.131 1.00*/0.0893 1.02*/0.219 

Energy/ 

Inference (mJ) 

N.R. N.R. N.R. 21.42* 0.0305 1.78*/0.158 0.357*/0.0767 

Accuracy (%) 99.2 98.9 98.2 99.1 96.5 99.5 99.5 

a. * Measurement based on the entire development board rather than just the FPGA core. N.R.: Not reported. 

 

   
(a) (b) 

 
(c) 

Fig.  14. The confusion matrix for the final model's ECG signal 

classification is displayed, providing a detailed breakdown of classification 
performance across different arrhythmia types, with a comparison between 

models trained (a) with and (b) without quantization-aware training. (c) 

ROC curves of all ECG classes and macro-average, showing high 
discriminative power of the proposed model. 
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Although lower energy per inference is reported in [32], its 

accuracy is not comparable to our implementation. This 

highlights that SNNs still lag behind CNNs in applications 

where high precision is critical—such as those requiring 

medical reliability.  We prioritize accuracy above all the other 

metrices because accuracy is the most important metric for 

medical reliability. The results with and without the throughput 

balancing method is compared in section IV.B. With balanced 

throughput among all hardware blocks, the inference latency is 

reduced by 5 times with 35.1% increase in LUT utilization. This 

result highlights the importance of throughput balancing in a 

pipelined streaming architecture.  

VI. DISCUSSION 

This study introduces an FPGA-based, real-time ECG 

classification system that integrates an innovative Inception-

ResNeXt architecture with configurable quantization-aware 

training and a cosine-approximated Continuous Wavelet 

Transform, achieving 99.5% inference accuracy on the MIT-

BIH dataset. By embedding the quantization process into the 

training phase, the model effectively learns to counteract 

quantization-induced errors, a challenge that has traditionally 

led to accuracy degradation in similar resource-constrained 

applications. This approach, in contrast to earlier methods, not 

only preserves critical signal features but also enhances overall 

performance, thereby setting a new benchmark in the domain 

of low-power biomedical signal processing. 

The implications of these findings are significant for the 

development of edge-AI devices, especially wearable health 

monitors that demand real-time performance and low power 

consumption. Implementing a multiclass classification system 

for cardiac irregularities directly on FPGA hardware enables 

rapid, edge-based detection of arrhythmias and other cardiac 

events without reliance on cloud processing. This local 

processing is essential for time-sensitive applications, such as 

pre-hospital emergency management and continuous patient 

monitoring where immediate, accurate feedback can be 

lifesaving. Furthermore, our hardware-software co-design 

strategy and optimized dataflow facilitate advanced neural 

network operations on FPGA platforms, delivering an energy-

efficient and reliable solution for continuous cardiac monitoring. 

This work contributes to the broader research discourse by 

demonstrating that adaptive quantization strategies can 

reconcile the trade-off between computational efficiency and 

model accuracy, thereby broadening the scope of practical 

applications in personalized healthcare. 

Nevertheless, the current system presents some limitations. 

Its validation is restricted to the MIT-BIH dataset, which may 

not fully represent the variability and noise encountered in 

diverse clinical environments. Comprehensive evaluation on 

independent and more heterogeneous ECG collections remains 

an important direction for future research, and we will continue 

to expand our validation as access to broader datasets and 

hardware resources becomes available. Moreover, while the 

fixed-point quantization method reduces memory usage and 

computational load, its performance under different signal 

conditions and with other types of biomedical data remains to 

be verified. Future research should focus on expanding the 

evaluation to more heterogeneous datasets, developing adaptive 

quantization techniques that dynamically respond to signal 

variations, and further refining the hardware architecture to 

reduce latency and enhance throughput.  

VII. CONCLUSION 

 This work presents a hardware-adaptive, configurable 

quantization-aware training (QAT) framework as the 

foundation of an efficient FPGA-based real-time ECG 

classification system. By embedding layer-wise, flexible 

quantization into the training loop and co-designing both the 

Inception-ResNeXt neural network and cosine-approximated 

CWT pipeline for hardware deployment, the proposed approach 

achieves state-of-the-art accuracy and energy efficiency at 

ultra-low bit-widths. Comprehensive FPGA implementation 

and measurements on the Arty A7-35 platform demonstrate 

99.5% inference accuracy on the MIT-BIH ECG dataset, with 

a compact 6-layer network achieving an average inference 

latency of 0.35 ms, dynamic power of 200 mW, and energy 

efficiency of 0.0767 mJ per inference. These results not only 

surpass existing FPGA-based solutions in both accuracy and 

model size but also validate the effectiveness of our hardware-

driven QAT methodology for reliable, low-power edge-AI 

biomedical applications. This work thus advances both the 

theoretical and practical frontiers of software–hardware co-

design for edge intelligence in healthcare. 
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