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Abstract—This paper presents a software-hardware co-
designed Field Programmable Gate Array (FPGA)-based real-
time ECG classification system that combines methodological and
practical innovations to achieve state-of-the-art performance with
an ultra-compact model. On the software side, we introduce a
hardware-adaptive, configurable quantization-aware training
(QAT) framework that enables layer-wise precision assignment
and flexible quantization, ensuring the trained model is highly
accurate and hardware-friendly even at ultra-low bit-widths. On
the hardware side, we propose a resource-efficient FPGA
accelerator featuring a streaming architecture and a cosine-
approximated CWT module, optimized for low-power and real-
time inference. Implemented in FPGA, We demonstrate that a 6-
layer Inception-ResNeXt network can achieve 99.5% inference
accuracy on the MIT-BIH ECG dataset with 200mW dynamic
power and 0.0767mJ/inference energy efficiency.

Index Terms — ECG, low-power Edge-Al, FPGA, Hardware-
software co-design, streaming architecture, fixed-point quantization.

. INTRODUCTION

Deep neural networks (DNNs) have demonstrated
remarkable performance in a wide range of classification
tasks in the areas of image recognition [1, 2] and natural
language processing [3], and recently shown great potentials
biomedical signal processing, particularly in electrocardiogram
(ECG) analysis for cardiovascular disease (CVD) monitoring
[4]. The emergence of wearable ECG devices, which enables
continuous monitoring of cardiovascular activities, greatly
benefits personalized medicine but also raises concerns of
personal information security. The capacity of continuous
monitoring and real-time analyzing cardiac data is essential for
early arrhythmia detection and timely clinical intervention [5].
However, implementing DNNs on wearable devices is faceing
substantial design challenges due to the limitations in memory
size and computational capacity as well as power hungry
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computation [6]. Field Programmable Gate Array (FPGA) is a
promising alternative which offers a combination of power
efficiency and flexibility for system upgrades due to their
reconfigurable nature. On the other hand, network weight
quantization has emerged as an effective method to reduce
memory usage while maintaining competitive classification
accuracy [9,10]. The main challenge lies in balancing model
complexity, accuracy, computational demands, and power
consumption [11,12]. Among various DNNSs, the Inception
architecture stands out for its use of variable filter sizes and
combined convolutions, enabling efficient feature extraction
and making it well-suited for resource-constrained edge devices
[13]. Given the trend toward personalized medicine and data
security, there is a critical need for an end-to-end, edge-
deployed ECG monitoring solution that leverages hardware—
software co-design for optimal performance and robustness in
limited environments. Recent advances in edge-based ECG
classification highlight the necessity of integrating algorithmic
innovation with hardware implementation [14-21]. While
developments in deep learning and adaptive quantization have
improved performance [16,17], real-time processing, energy
efficiency, and hardware compatibility remain essential [20,21].
Thus, jointly optimizing neural network design and hardware
realization is vital for next-generation wearable and edge
medical devices.

Many methods have been explored to implement ECG
monitoring algorithm and hardware-software co-design for
ECG ventricular ectopic beat classification have been reported
[14-28]. For instance, prior studies have introduced various 1D
CNN-based approaches for ECG signal classification [22, 23].
However, using 1D ECG signals for model training, which
often contain noise such as baseline wandering effects,
necessitates extensive preprocessing to filter and extract
features, including frequency domain characteristics [24].
Recent research focused on the mapping of ECG signals to
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Fig. 1. Block diagram of the proposed real-time ECG signal classification system. Association for the Advancement of Medical Instrumentation (AAMI)

recommends grouping ECG heartbeats into the five categories

frequency domain and processing them with DNNs like LSTM
and 2D CNNs [25, 26]. Nonetheless, the huge amount of data
involved in these approaches pose challenges for real-time
implementation on edge devices. More recently, hardware
solutions have been proposed and simulated on FPGA and
ASIC platforms [27, 28] but achieving applications beyond
binary classification remains a challenge. Moreover, the
development of circuits for transforming ECG signals into 2D
spectrogram representations still require enhancements tailored
for edge devices [29, 30]. Furthermore, additional endeavors
have been made to provide FPGA implementations [31-33].
However, addressing the critical need for hardware-software
co-design on FPGA platforms remains a pressing concern.
This work presents an FPGA-based real-time ECG
classification system. The key innovations in this work are
summarized as follows. Firstly, we introduce a hardware-driven,
configurable quantization-aware training (QAT) pipeline that
jointly optimizes network training and quantization for the
deployment constraints of FPGA-based edge devices. This
adaptive  framework enables layer-specific  bit-width
assignment, dynamic quantization resolution based on kernel
statistics, and seamless integration of hardware limitations into
the training process, yielding a highly compact model with
state-of-the-art accuracy. Secondly, the system-level software—
hardware co-design methodology is adopted, wherein the
Inception-ResNeXt neural network architecture, cosine-
approximated CWT feature extraction, and the FPGA hardware
architecture are holistically optimized for real-time edge
inference. Thirdly, we demonstrate the effectiveness of this
integrated approach through a rigorous FPGA implementation,
achieving 99.5% accuracy, low inference energy, and compact
model size, thus establishing a new benchmark for low-power,
high-performance edge-Al biomedical systems. Implementing

a pipelined streaming architecture with layer wise customized
dataflow and precision to achieve ultra-low latency inference
while maintaining low resource consumption on FPGA. A 6-
layer Inception-ResNeXt is designed with 8 bit/ 4 bit resolution.
MIT-BIH ECG dataset [34] with five distinct classes is used for
evaluating our inference accuracy.

The rest of this paper is organized as follows, Section Il
introduces the overall system architecture and the Inception-
ResNeXt network. Section Il presents the band pass filter
(BPF)-based approximated CWT signal processing block.
Section IV presents the FPGA implementation and Section V
shows the measurement results. Finally, Section VI concludes
the paper.

Il. CVD RECOGNITION SYSTEM WITH INCEPTION-RESNEXT

Fig. 1 shows the block diagram of the proposed real-time
ECG classification system. The raw ECG signal acquired from
the sensor is first preprocessed in hardware by the MAX30003
AFE chip, which performs band-pass filtering, baseline
stabilization, and real-time segmentation. The denoised ECG
windows are then sent to the FPGA, where a CWT
approximation extracts the feature map. The quantized feature
map will be processed by a 2-stage Inception-ResNeXt network
and a MLP classifier for classification.

A. Data Preprocessing

MIT-BIH arrhythmia database [34] is used for neural
network training. This dataset comprises 48 half-hour segments
of ambulatory ECG recordings, captured from 47 individuals.
The data sampling frequency is 360 Hz per lead with 11-bit
resolution.

Each ECG beat is segmented with a focus on the R-wave
peak time, as shown in Fig. 2. Specifically, the classification of
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Fig. 2. Signal segmentation based on R-wave peak times. The method
used to segment ECG signals focuses on the R-wave peaks to isolate
individual heartbeats for precise arrhythmia classification.
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Fig. 3. Data preprocessing workflow for ECG signals.

arrhythmia types is anchored at the R-wave peak of every ECG
beat. The R-wave peak is used as the center point to generate
segmented ECG signal. The boundaries of each beat signal are
defined by the preceding and subsequent R-peaks, with an
additional bias applied to refine the segmentation. This method
allow us to isolate individual ECG beats precisely yet
consistantly. The range of a single beat is determined by:

T(Rpeak(k — 1) + b) < T(Rpeak(k))
< T(Rpeak(k + 1) — (120 — b)) Q)

where T (Rpeak (k)) is the R-wave peak time of annotation k
and b is the beat range bias. However, it is important to note
imbalanced sample distribution in this dataset, recognized by
[35]. To mitigate the impact of imbalanced sample distribution,
two strategies have been introduced during the preprocessing
phase as shown in Fig. 3. In the training process, for common
classes like Normal beats (N) and Ventricular ectopic beats (V),
arandom selection of 5000 samples from each class is made for
every epoch. Conversely, for rarer classes such as
Supraventricular ectopic Beats (S), Fusion beats (F) and
Unclassifiable beats (Q), a dynamic approach is utilized to
augment the data with a variable beat range bias, randomly
chosen between 40 and 80, according to the equation (1). This
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Fig. 4. (a) The architecture of the Inception network and (b) the proposed
Inception-ResNeXt block (IRN block). (c) Ablation study comparing the
proposed Inception-ResNeXt (IRN) block with conventional ResNet and
Inception blocks.

strategy facilitates the generation of 2000 samples for each rare
class. This method does not increase computational complexity
nor requires extensive hyperparameter tuning. It serves as an
implicit regularization technique, effectively balancing the
dataset without imposing additional computation burdens. In
addition, all dataset was performed with systematic random
noise injection and shifting augmentation, ensuring the
evaluation reflects both diversity and robustness.

Subsequently, all samples are standardized to a uniform size
of 360 data points. For samples exceeding this length,
truncation is applied to reduce the size to 360. Conversely,
shorter samples are padded with zeros to extend their length to
the standard size. This standardization ensures uniformity in the
dataset, facilitating consistent processing and analysis.

B. Inception-ResNeXt Architecture

Inception excels at capturing multi-scale features via multi-
path convolutions, though it can be computationally intensive.
Conversely, ResNeXt, featuring grouped convolutions and
residual connections, offers efficiency and stable training but
may lack detailed multi-scale feature extraction. Combining
these architectures leverages their complementary strengths,
providing a balanced solution for robust ECG signal processing.
Although the CWT already extracts primary time-frequency
information, the feature extractor within the Inception-ResNeXt
model is by no means redundant. Instead, it is specifically
designed to work on the resulting image-like data, utilizing
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multi-path convolutions to further refine features and capture
spatial patterns at different scales. This complementary
approach enhances the discriminative capability of the network,
ensuring that the model can effectively learn subtle variations
in the ECG signals.

Fig. 4 shows the block digaram of the conventional Inception
block, Fig. 4(a), and the proposed Inception-ResNeXt model,
Fig. 4(b). The input feature map firstly goes through a 1x1
convolution to reduce channel dimensions and prepare features
for subsequent operations. Next, the feature map is processed
by a 3>3 convolution to extract spatial information. The
resultant feature map is then split into two equal segments along
the channel dimension as ResNeXt, each with half number of
channels. The first segment of the split channels undergoes
another 3>3 convolution to further refine its representation to
achieve 5>6 effective receptive field, while the second segment
retains its original processed features. These two segments are
subsequently recombined through channel-wise concatenation,
allowing multi-scale spatial patterns and complementary
representations to merge effectively, similar to the parallel
operations in Inception approach. Finally, the concatenated
output is subjected to an element-wise addition with the original
feature map from the 1x<1 convolution, forming a residual
connection.

Channel splitting reduces the computation load while
retaining feature extraction capabilities. Hardware-specific
optimizations, such as mapping the 1>1 and 3>3 convolutions
to dedicated hardware units, and efficient channel
concatenation, further enhance performance by minimizing
data movement and latency. Moreover, it has been proven that
consecutive 3>3 convolutions is equivalent to a 5>5
convolution [13]. This finding can be used to increase
computational efficiency while preserving model capacity. The
residual connections not only facilitate better gradient flow
during the training but also promote data reuse, reducing
redundant computations and boosting energy efficiency. These
features make the IRN block a robust solution for real-time
image processing and embedded Al tasks, where efficiency and
high performance are critical.

To further validate the effectiveness of the proposed IRN
block, we conducted an ablation study comparing it with
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Fig. 6. System accuracy is evaluated across various weight and activation
resolutions, demonstrating the trade-offs between quantization levels and
computational efficiency.

conventional ResNet and Inception blocks under identical
training and evaluation protocols. As summarized in Fig. 4(c),
the IRN block achieves competitive accuracy with reduced
computational complexity and parameter count compared to the
ResNet block, and outperforms the Inception block in accuracy
with only a slight increase in MACs. This demonstrates the
balanced trade-off between efficiency and accuracy brought by
our design.

C. Configurable Quantization Aware Training

During the training phase of the Inception-ResNeXt, the
configurable quantization method is applied for weight
quantization and activation quantization, respectively.
Quantization aware training (QAT) ensures that the model is
optimized for quantized deployment [36], leading to reduced
model size and lower computation complexity. The flowchart
of the training process is shown in Fig. 5. For weight
quantization in this system, the process is intricately intertwined
with the backpropagation algorithm. Conversely, for activation
quantization, the procedure is integrated into the forward pass
of the network. The system accuracy was systematically
evaluated across a range of weight and activation resolutions,
as illustrated in Fig. 6. The results demonstrated a clear trend,
indicating the tradeoffs in selecting different resolutions.
Specifically, the model weights are quantized to a signed 4-bit
representation with 8-bit activation resolution.

In the proposed quantization process, a 2D convolution
kernel of dimensions (C, H, W) is utilized as an example. The
initial step involves determining the maximum absolute value
within the kernel.

kma = max (ch,h,wD (2)

where, K., represents the value of the kernel at the
ct"channel, h" row, and wt* column. The function max (-)
operates over all the kernel dimensions, and | - | denotes the
absolute value. Subsequently, the Most Significant Bit (MSB)
resolution in the fixed-point representation is defined as follows:

. ko, >2"
Tysg =T, 1if {kmrza< oT+1 (3)
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Fig. 7. The matrix of wavelets generated for different scales with the
proposed discrete CWT approximation implemented on FPGA.

The n-bit signed fixed-point number has 1 sign bit and (n —
1) binary bits. The resolution of the Most Significant Bit (MSB)
is 2™MsB decreasing exponentially to the resolution of the Least
Significant Bit (LSB), which is 2"Mss+2=1,

This approach ensures that the quantization process is
dynamically adaptable, enhancing the precision of the weights
while maintaining a balance between model size and
performance. Post-linear and nonlinear operations, the resultant
features are quantized to a signed 8-bit format, also utilizing a
configurable fixed-point approach. This method of quantization
for activations allows for a more nuanced representation of the
feature space, catering to the intricate variations in the data
while ensuring computational efficiency.

By quantization of weights and activations, the model size is
reduced significantly, becoming more suitable for deployment
on hardware with limited computational resources.
Furthermore, the configurable nature of the fixed-point
representation in both weight and activation quantization allows
for a flexible adjustment of the trade-off between accuracy and
computational demand. This adaptability is crucial in ensuring
that the proposed system remains both efficient and effective in
real-world applications.

I1l. BPF-BASED CWT APPROXIMATION

A. Theory Derivation

Continuous Wavelet Transform (CWT) represents signal
frequency content at different scales and time intervals
simultaneously. ECG signals are inherently non-stationary,
with rapid transitions that can be critical for identifying
arrhythmic events. CWT provides a powerful tool to analyze
such signals in both time and frequency domains
simultaneously. This dual-domain representation enhances the
visibility of transient features that are often masked in purely
time-domain analysis, making it particularly suitable for
detecting subtle pathological changes. The original CWT
formula is written as:

CWT(a,b) = = [, f(0) ()t )
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Fig. 8. Fusion of 1D convolution and average pooling into an effective 1D
convolution operation for efficient hardware implementation.

where f(t) represents the input time domain signal, a and b
are the scale and translation of the transform, respectively and
@ is the wavelet function. In this design, Morlet wavelet, which
is a multiplication of a complex exponential and a Gaussian
window is chosen as the wavelet function. In contrast to Haar
or Daubechies wavelets, the complex Morlet wavelet was
selected for its superior time-frequency localization and phase
sensitivity, which are critical for accurately capturing the subtle
morphological features of ECG signals. The representation of
Morlet is shown as

2

o(t) = eitez (5)

In practical applications, the complex exponential function in
the ei®t Morlet wavelet can be approximated with cosine
function cos(wt) with small wt.

t2

@'(t) = cos (wt)-e 2 (6)

The cosine approximation for the Morlet wavelet is
particularly effective for ECG signals, because of its low
frequency characteristic. By using cosine instead of the full
complex format, CWT hardware implementation in FPGA has
reduced resource requirements, leading to faster computations
and improved efficiency. This simplification also lowers power
consumption, which is crucial for low-power medical devices.
Despite the simplification, the accuracy for high-frequency
feature extraction remains largely unaffected, making it an
efficient approach for edge computing scenarios. Replace the
wavelet function in CWT, we have
t=by2

a

2 dt (7)

CWT'(a,b) = ‘/%f_oowf(t) - cos (w -%) e’

To implement the CWT on FPGA, (7) is rewritten in a
discrete format, where integration is replaced with summation
and the continuous parameters are discretized.

CWT'(j, k) = an[n] . ¢'[n — 2Kk]
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where f[n] represents the discrete signal at sample n, j and k
are the scale and translation of the transform, respectively.

= %znf[n] - cos (@ -

IV. FPGA IMPLEMENTATION AND ACCELERATION

A. Implementation of CWT Approximation

Following (8), the simplified discrete CWT can be
segmented into two main components: wavelet generation and
1D convolution, followed by average pooling. After the scale
and translation parameters of the Morlet wavelet are determined,
the wavelet kernels across scales from 1 to 90 are precomputed
offline and stored as a wavelet matrix on the FPGA, as
illustrated in Fig. 7. This matrix contains the discrete wavelet
coefficients for each scale and is independent of the specific
input data, allowing for rapid access and reuse during inference.
For each new input signal segment, the FPGA retrieves the
appropriate pre-stored wavelet kernel for each scale and
performs a 1D convolution with the input signal to obtain the
set of CWT coefficients. This design enables real-time,
resource-efficient processing without the need for runtime
wavelet generation.

After obtaining the CWT coefficients for all scales, an
average pooling operation is applied along the temporal
translation dimension. While this pooling step is not part of the
classical CWT mathematical definition, it is incorporated in our
hardware design to reduce the size of the feature map and
minimize resource usage in the subsequent neural network
layers. By aggregating adjacent CWT coefficients, average
pooling compresses the feature representation, achieving a
favorable balance between information preservation and
hardware efficiency.

To further reduce computational overhead, the wavelet
convolution and average pooling operations are fused into a
single wavelet matrix, as illustrated in Fig. 8. This integration
removes the need for separate hardware dedicated to average
pooling, thereby lowering hardware complexity. The fused
CWT-pooling layer is realized as a one-dimensional
convolutional operation with 60 output channels, implemented

using the same hardware architecture as standard convolutional
layers. The hardware implementation of discrete CWT
apporximation is compared with software CWT in Fig. 9. It can
be observed that results at smaller scales (high frequencies) are
very close to the original, while at larger scales (low
frequencies), a slight reduction occurs. The reason is that at
smaller scales, wavelet transforms focus on the local details of
the signal, which are dominated by high-frequency components.
The cosine function effectively approximates these local
structures, and since the amplitude of high-frequency
components in ECG signals is typically low, the omission of the
imaginary part (sine component) results in negligible
information loss, thereby maintaining accuracy. The effect on
ECG signal classification was minimal after QAT training, and
the approximation significantly reduced FPGA resource
consumption by eliminating the need for complex arithmetic
units, thereby enhancing computation speed and efficiency,
which is particularly beneficial for edge computing devices.

B. Neural Network Hardware Architecture

After the quantization-aware training process is completed,
the finalized model is exported and fully mapped onto the
FPGA hardware. The FPGA operates only as an inference
accelerator, using the fixed weights and quantization
parameters determined during offline training. No further
software process is required for quantization or model
adjustment at runtime. The FPGA-based implementation of the
neural network (NN) hardware architecture is illustrated in Fig.
10. As shown in Fig. 10(a), the design adopts a layer-by-layer
streaming architecture employing dedicated hardware modules,
which is particularly advantageous for compact neural networks
in tinyML applications. This architecture offers high
adaptability to support network compression techniques, such
as pruning and quantization, that introduce structural
irregularities.

The streaming architecture on FPGA allows for customized
dataflow in all hardware blocks, which can be tailored to
minimize control logics and memory size. This distinct
advantage of FPGA implementation is leveraged to enable
more efficient Inception-ResNeXt acceleration. For instance,
the IRN block shown in Fig. 4(b) is implemented as 2 IRN
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to suit different dataflows.

blocks, IRN_CONV1 and IRN_CONV?2 as shown in Fig. 10(a).
IRN_CONV1 includes the first 3>3 convolutional layer and the
1x1 convolutional layer, which share the same control logic,
weight memory, and input activation memory. The output
activations require special handling because all activations from
the 11 convolutional layer and half of the activations from the
first 3>3 convolutional layer do not pass through the second
3>3 convolutional layer. Therefore, half of the activations from
the 11 convolutional layer and the 3>3 convolutional layer are
added together before being sent to the IRN_CONV2 block,
reducing the activation memory required in IRN_CONV?2. The
memory controller of the IRN_CONV2 block is then
customized to read only half of the input feature maps for the
PEs to perform the second 3>3 convolution, while the other half
of the feature maps are bypassed and directly forwarded as
output activations of the IRN_CONV2 block. This special
memory handling can only be achieved by customizing the
memory controller shown in Fig. 10(b) of the IRN_CONV2
block to efficiently store and read these activations for
processing. Similarly, for downsampling layers, pooling layers,
and the MLP layer, the logics are customized to achieve the
ideal balance between resource usage and accelerator
performance.

Furthermore, because different layers may require distinct
quantization levels as determined by the configurable QAT, our
hardware design integrates dedicated hardwired logic within
each layer’s processing block to natively support these layer-
specific quantization levels. This eliminates the need for
additional shifters or memory buffers and demonstrates one of
the key advantages of adopting a streaming architecture.

C. Dataflow for Efficient Throughput Balancing

One significant drawback of using a streaming architecture
with dedicated layer modules is the low utilization of
processing elements (PEs). PEs start to process only when the

input data is ready, leading to considerable idle states while
waiting for inputs. The ideal scenario is to have the same
throughput for all layers, enabling maximum pipeline
utilization. However, achieving this is challenging due to the
large variety of NN architectures and structures.

The most promising approach for throughput balancing is
through row or column parallelism [37]. Using this input
stationary-output stationary (ISOS) dataflow, the input
consumption and output production of each layer are balanced.
However, achieving a highly balanced pipeline using 1SOS
would require a huge number of PEs, which is not practical for
edge applications.

Therefore, instead of balancing the latency processing one
row or one column for each layer, we balance the average
latency to process all output activation pixels for each layer.
This method reduces PE utilization and increases memory
footprint by a small margin compared to the 1ISOS dataflow, but
it significantly reduces the number of PEs required.The
throughput of each layer can be estimated as shown in equation
below.

Unroll Factor

Time needed ©

Number
Xto compute 1x ;
. . output pixel
input pixel

Throughput =

Number of
input pixels
per output pixel

The throughput of each layer can be adjusted by tuning the
unroll factor and the time needed to compute one input pixel.
For layers that require a larger number of input pixels to
compute one output pixel, we can increase the unroll factor by
introducing more PEs or introduce faster MAC units for quicker
computation, or both. Conversely, for layers that require a
smaller number of input pixels, we can introduce slower MAC
units such as bit-serial MAC units to reduce resource usage
without sacrificing performance. Moreover, the PE architecture
shown in Fig. 10(c) can be configured to cater to different
dataflows suitable for different NN layers, adding another
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degree of freedom for throughput tuning in each layer block.
When the throughput of all layer blocks roughly matches the
input consumption rate of the subsequent blocks, PE utilization
is more balanced, and higher accelerator performance can be
achieved while maintaining low resource usage. As shown in
Fig. 11, PE utilization across different layers are better balanced
with the throughput balancing technique introduced.

V. MEASUREMENT RESULTS

As the preprocessing by MAX30003 is fully hardware-based
and incurs negligible latency and resource cost compared to
FPGA inference, it is not separately measured in our reported
results. The pre-processed data were converted to half-precision
format (IEEE 754 binaryl6 [38]). This conversion was
performed to optimize computational efficiency and resource
utilization during the processing phase. The half-precision ECG
signals were then processed utilizing the proposed Continuous
Wavelet Transform (CWT) approximation method. This
approximation technique was selected for its ability to
effectively analyze the frequency components of the ECG
signals, which is crucial for identifying arrhythmic events
within the data.

QAT training was implemented in an environment equipped
with an Intel 13600KF CPU, 32GB of RAM, and an NVIDIA
RTX 3060Ti GPU. The model was optimized using stochastic
gradient descent with a momentum of 0.8 and an initial learning
rate of 0.01. Training was conducted over 300 epoch with a
batch size of 200, and dropout (p=0.5) was applied in the fully
connected layer to mitigate overfitting. Additionally,
quantization-aware training was integrated using custom
modules that perform 4-bit weight and 8-bit activation
quantization to balance accuracy and computational efficiency.
The proposed configurable quantization-aware training process
was designed to enhance the model ability to maintain accuracy
when deployed in environments with limited computational
resources by incorporating quantization considerations directly
into the training process, enabling the network to learn
compensation strategies for the quantization-induced noise and
thereby preserve critical feature representations despite reduced
bit precision. Furthermore, by adaptively adjusting quantization
precision across different layers, this approach minimizes the

§ Power Supply 3

Arty A7-35 Development Board

2 15220 Precision Energy Analyzer | 4 Joulescope UI displaying power

Fig. 13. Power consumption measurement setup with Power JS220
Precision Energy Analyzer. The higher power levels shown on the screen
correspond to periods when the board is actively performing inference.
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Fig. 12. The training process of the Inception-ResNeXt model

typical accuracy degradation associated with quantization while
reducing memory and computational requirements. Fig. 12
shows the results of the configurable quantization-aware
training process. The training phase achieved a remarkable
accuracy from 93.28% for the model trained without
configurable quantization-aware training to 99.5% under 4-bit
weight quantization and 8-bit activation quantization, which
also showcased the effectiveness of the proposed model.

The proposed Inception-ResNeXt model is deployed on an
Arty A7-35 development board with the architecture shown in
Fig. 10. To ensure an efficient and reliable implementation, the
proposed architecture was described in HDL and developed
using the standard Xilinx Vivado [44] 2022.1 toolflow for
synthesis, implementation and bitstream generation. The
generated bitstream was then deployed onto the Arty A7-100T
FPGA development board. For performance evaluation,
batches of preprocessed ECG signals were transmitted from a
host laptop to the FPGA board via a USB interface. The FPGA
performed real-time inference, and the resulting classifications
were collected on the host for accuracy evaluation. Average
inference latency was measured directly on the hardware using
timestamping at the input and output of each batch. Power
consumption was measured following the setup shown in Fig.
13. The FPGA board was powered through a JS220 precision
power analyzer, with the power consumption monitored via the
analyzer’s user interface, in line with the manufacturer’s
guidelines [45]. The implementation of model on an FPGA
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TABLE |. COMPARISONS WITH STATE-OF-THE-ART FPGA IMPLEMENTATIONS ON 5-CLASS-MIT-BIH DATASET
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[39] [40] [41] [42] [43] This Work This Work
(w/o throughput (w/ throughput
balancing) balancing)
Feature LC-CTDA N.R. LC BernoulliRBM | N.R. CWT CWT
Extraction
Network ANN CNN SNN CNN CNN Inception-ResNeXt | Inception-ResNeXt
Avrchitecture
Model Size 59.5 177 75.6 51200 6.55 254 254
(Kbit)
Hardware Pyng-Z2 ZC706 XC7A100T |PYNQ-Z1 PYNQ-Z2 XC7A35T XC7A35T
Platform
LUTs 6293 2510 659 17579 10877 8414 11364
DSPs 0 96 0 85 53 0 0
FFs 1331 N.R. 783 20060 1949 15971 21118
BRAMs 0 N.R. 17 39.5 2 28 28
Inference 2.52 38.6 0.504 14 0.233 1.78 0.350
Latency (ms)
Power N.R. N.R. N.R. 1.53* 0.131 1.00*/0.0893 1.02*/0.219
Energy/ N.R. N.R. N.R. 21.42* 0.0305 1.78*/0.158 0.357*/0.0767
Inference (mJ)
Accuracy (%) |99.2 98.9 98.2 99.1 96.5 99.5 99.5
& * Measurement based on the entire development board rather than just the FPGA core. N.R.: Not reported.
Prediction Prediction in Fig. 14(a). This matrix provides a detailed breakdown of the
N S V F @ N s Vv F Q model predictive capabilities across different classes, offering
N N insights into its precision and reliability in classifying ECG
s s signals. To underscore the impact of the configurable
5 5 quantization-aware training on the model performance, the
Qvy avy . . . . . .
] = confusion matrix of the model trained without the incorporation
F F of configurable quantization-aware training is presented in Fig.
14(b). Notably, it was observed that the accuracy of the FPGA
a a implementation achieves significantly 99.5% for this software-
@ (b) hardware co-design model benefiting from this innovative
ol Femmmmmmm i . configurable quantization aware training approach. To provide
: L e L e e T T 1 a more comprehensive evaluation of the class-wise
\ discrimination, Fig. 14(c) further presents the receiver
ey operating characteristic (ROC) curves and corresponding
E macro-average for all five ECG classes. All classes achieve
@06 [ 100 high AUC values, and the inset highlights the near-perfect
= separability in the high-AUC region, demonstrating the
co4} N excellent performance and robustness of the proposed approach
g S in multi-class ECG classification.
= 02l v Table. | summarized the measurement results and compared
' F with other recent state-of-the-art designs. It can be observed
Q =l oS 5 10 that this design achieved the highest accuracy among all
0.0} macro . . .
implementations, demonstrating the performance of the
00 02 02 06 o8 0 proposed network architecture. Additionally, as depicted in Fig.
False Positive Rate 15, this design achieved the highest accuracy with the smallest
(©) model size, providing a good balance between model size and

Fig. 14. The confusion matrix for the final model's ECG signal
classification is displayed, providing a detailed breakdown of classification
performance across different arrhythmia types, with a comparison between
models trained (a) with and (b) without quantization-aware training. (c)
ROC curves of all ECG classes and macro-average, showing high
discriminative power of the proposed model.

platform was evaluated to assess its real-world applicability and
performance. The confusion matrix, a pivotal tool for
visualizing the performance of classification models is shown

accuracy. Furthermore, this design achieved low energy
consumption per inference, which is a significant advantage for
edge devices. This is attributed to the implemented streaming
architecture, where the neural network is directly mapped onto
the FPGA, resulting in an optimized and efficient hardware
implementation. These results also demonstrate that FPGASs can
serve as an ideal platform for software—hardware co-design,
particularly in the context of neural network implementation.
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Fig. 15. The relationship between model accuracy and model size is
depicted. Higher accuracy is preferable, while a smaller model size is more
desirable.

Although lower energy per inference is reported in [32], its
accuracy is not comparable to our implementation. This
highlights that SNNs still lag behind CNNs in applications
where high precision is critical—such as those requiring
medical reliability. We prioritize accuracy above all the other
metrices because accuracy is the most important metric for
medical reliability. The results with and without the throughput
balancing method is compared in section 1V.B. With balanced
throughput among all hardware blocks, the inference latency is
reduced by 5 times with 35.1% increase in LUT utilization. This
result highlights the importance of throughput balancing in a
pipelined streaming architecture.

VI. DISCUSSION

This study introduces an FPGA-based, real-time ECG
classification system that integrates an innovative Inception-
ResNeXt architecture with configurable quantization-aware
training and a cosine-approximated Continuous Wavelet
Transform, achieving 99.5% inference accuracy on the MIT-
BIH dataset. By embedding the quantization process into the
training phase, the model effectively learns to counteract
quantization-induced errors, a challenge that has traditionally
led to accuracy degradation in similar resource-constrained
applications. This approach, in contrast to earlier methods, not
only preserves critical signal features but also enhances overall
performance, thereby setting a new benchmark in the domain
of low-power biomedical signal processing.

The implications of these findings are significant for the
development of edge-Al devices, especially wearable health
monitors that demand real-time performance and low power
consumption. Implementing a multiclass classification system
for cardiac irregularities directly on FPGA hardware enables
rapid, edge-based detection of arrhythmias and other cardiac
events without reliance on cloud processing. This local
processing is essential for time-sensitive applications, such as
pre-hospital emergency management and continuous patient
monitoring where immediate, accurate feedback can be
lifesaving. Furthermore, our hardware-software co-design
strategy and optimized dataflow facilitate advanced neural

network operations on FPGA platforms, delivering an energy-
efficient and reliable solution for continuous cardiac monitoring.
This work contributes to the broader research discourse by
demonstrating that adaptive quantization strategies can
reconcile the trade-off between computational efficiency and
model accuracy, thereby broadening the scope of practical
applications in personalized healthcare.

Nevertheless, the current system presents some limitations.
Its validation is restricted to the MIT-BIH dataset, which may
not fully represent the variability and noise encountered in
diverse clinical environments. Comprehensive evaluation on
independent and more heterogeneous ECG collections remains
an important direction for future research, and we will continue
to expand our validation as access to broader datasets and
hardware resources becomes available. Moreover, while the
fixed-point quantization method reduces memory usage and
computational load, its performance under different signal
conditions and with other types of biomedical data remains to
be verified. Future research should focus on expanding the
evaluation to more heterogeneous datasets, developing adaptive
quantization techniques that dynamically respond to signal
variations, and further refining the hardware architecture to
reduce latency and enhance throughput.

VII. CONCLUSION

This work presents a hardware-adaptive, configurable
quantization-aware training (QAT) framework as the
foundation of an efficient FPGA-based real-time ECG
classification system. By embedding layer-wise, flexible
quantization into the training loop and co-designing both the
Inception-ResNeXt neural network and cosine-approximated
CWT pipeline for hardware deployment, the proposed approach
achieves state-of-the-art accuracy and energy efficiency at
ultra-low bit-widths. Comprehensive FPGA implementation
and measurements on the Arty A7-35 platform demonstrate
99.5% inference accuracy on the MIT-BIH ECG dataset, with
a compact 6-layer network achieving an average inference
latency of 0.35 ms, dynamic power of 200 mW, and energy
efficiency of 0.0767 mJ per inference. These results not only
surpass existing FPGA-based solutions in both accuracy and
model size but also validate the effectiveness of our hardware-
driven QAT methodology for reliable, low-power edge-Al
biomedical applications. This work thus advances both the
theoretical and practical frontiers of software—hardware co-
design for edge intelligence in healthcare.
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